Playing soccer is hard work.

If you’re like most people, when you play an active game like soccer you probably breathe hard and perspire. You need a constant supply of oxygen and energy to keep your body cells functioning. Your body is adapted to meet that need.

Science Journal

Write a paragraph describing what you do to help your body recover after an active game.
Breathing Rate

Your body can store food and water, but it cannot store much oxygen. Breathing brings oxygen into your body. In the following lab, find out about one factor that can change your breathing rate.

1. Complete a safety worksheet.
2. Put your hand on the side of your rib cage. Using a watch or clock with a second hand, count the number of breaths you take for 15 s. Multiply this number by four to calculate your normal breathing rate for one minute.
3. Repeat step 1 two more times, then calculate your average breathing rate.
4. Do a physical activity described by your teacher for one minute and repeat step 1 to determine your breathing rate now.
5. Time how long it takes for your breathing rate to return to normal.
6. Think Critically In your Science Journal, write a paragraph explaining how breathing rate appears to be related to physical activity.

Identify Questions Before you read the chapter, write I breathe under the left tab, and write Why do I breathe? under the center tab. As you read the chapter, write the answer you learn under the right tab.
Functions of the Digestive System

Food is processed in your body in four stages—ingestion, digestion, absorption, and elimination. Whether it is a piece of fruit or an entire meal, all the food you eat is treated to the same processes in your body. As soon as food enters your mouth, or is ingested, digestion begins. Digestion breaks down food so that nutrients can be absorbed and moved into blood.

Nutrients are substances in food that provide energy and materials for cell development, growth, and repair. From blood, these nutrients can move through a cell membrane to be used by a cell. Unused substances pass out of your body as wastes.

Digestion is mechanical and chemical. Mechanical digestion takes place when food is chewed, mixed, and churned. Chemical digestion occurs when chemical reactions break down food.

Enzymes

Chemical digestion is possible only because of enzymes (EN zimez). An **enzyme** is a type of protein that speeds up the rate of a chemical reaction in your body. One way enzymes speed up reactions is by reducing the amount of energy necessary for a chemical reaction to begin. If enzymes weren’t there to help, the rate of chemical reactions would be too slow. Some reactions might not even happen at all. As shown in Figure 1, enzymes work without being changed or used up.

![Figure 1](image)

Figure 1 Enzymes speed up the rate of certain body reactions.

Explain what happens to the enzyme after it separates from the new molecule.
Enzymes in Digestion Many enzymes help you digest the food that you eat. These enzymes are produced in some of the organs of your digestive system.

What is the role of enzymes in the chemical digestion of food?

Other Enzyme Actions Enzyme-aided reactions are not limited to the digestive process. Enzymes also help speed up chemical reactions responsible for building your body. They are involved in the energy-releasing activities of your muscle and nerve cells. Enzymes also help the blood-clotting process. Without enzymes, the chemical reactions in your body would happen too slowly for you to exist.

Organs of the Digestive System

Your digestive system has two parts—the digestive tract and the accessory organs. The major organs of your digestive tract—mouth, esophagus (ih SAH fuh gus), stomach, small intestine, large intestine, rectum, and anus—are shown in Figure 2. Food passes through all of these organs. The tongue, teeth, salivary glands, liver, gallbladder, and pancreas, also shown in Figure 2, are the accessory organs. Although food doesn’t pass through them, they are important in mechanical and chemical digestion. Your liver, gallbladder, and pancreas produce or store enzymes and other chemicals that help break down food as it passes through the digestive tract.

Figure 2 The human digestive system can be described as a tube divided into several specialized sections. If stretched out, an adult’s digestive system is 6 m to 9 m long.
The Mouth Mechanical and chemical digestion begin in your mouth. Mechanical digestion happens when you chew your food with your teeth and mix it with your tongue. Chemical digestion begins with the addition of a watery substance called saliva (suh LI vuh), which contains water, mucus, and an enzyme that helps breakdown starch into sugar. Saliva is produced by three sets of glands near your mouth, shown in Figure 3. Food mixed with saliva becomes a soft mass and is moved to the back of your mouth by your tongue. It is swallowed and passes into your esophagus. Now ingestion is complete, but the process of digestion continues.

The Esophagus Food moving into the esophagus passes over a flap of tissue called the epiglottis (eh puh GLAH tus). This structure automatically covers the opening to the windpipe to prevent food from entering it, otherwise you would choke. Your esophagus is a muscular tube about 25 cm long. No digestion takes place in the esophagus. Smooth muscles in the wall of the esophagus move food downward with a squeezing action. These waves of muscle contractions, called peristalsis (per uh STAHL sus), move food through the entire digestive tract. Secretions from the mucous glands in the wall of the esophagus keep food moist.

The Stomach The stomach is a muscular bag. When empty, it is somewhat sausage shaped with folds on the inside. As food enters from the esophagus, the stomach expands and the folds smooth out. Mechanical and chemical digestion take place here. Mechanically, food is mixed in the stomach by peristalsis. Chemically, food is mixed with enzymes and strong digestive solutions, such as hydrochloric acid solution, to help break it down.
Specialized cells in the stomach’s walls release about two liters of hydrochloric acid solution each day. This solution, with the enzyme pepsin, digests protein, such as meat, and destroys bacteria that are present in food. The stomach also produces mucus, which makes food more slippery and protects the stomach from the strong, digestive solutions. Food is changed in the stomach into a thin, watery liquid called chyme (KIME). Slowly, chyme moves out of your stomach and into your small intestine.

Why isn’t your stomach digested by the acidic digestive solution?

The Small Intestine Your small intestine, shown in Figure 4, is small in diameter, but it measures 4 m to 7 m in length. As chyme leaves your stomach, it enters the first part of your small intestine, called the duodenum (doo AH duh num). Most digestion takes place in your duodenum. Here, bile—a greenish fluid from the liver—is added. The acidic solution from the stomach makes large fat particles float to the top of the chyme. Bile breaks up the large fat particles, similar to the way detergent breaks up grease.

Chemical digestion of food occurs when a digestive solution from the pancreas is mixed in. This solution contains enzymes and chemicals that help neutralize the stomach acid that is mixed with chyme. Your pancreas also makes insulin that allows glucose to pass from the bloodstream into your cells.

Absorption of broken down food takes place in the small intestine. The wall of the small intestine, as shown in Figure 4, has many ridges and folds. These folds are covered with finger-like projections called villi (VIH li). Villi increase the surface area of the small intestine, which allows more places for nutrients to be absorbed. Nutrients move into blood vessels within the villi. From here, blood transports the nutrients to all cells of your body. Peristalsis continues to force the remaining undigested and unabsorbed materials slowly into the large intestine.

Figure 4 Hundreds of thousands of densely packed villi give the impression of a velvet cloth surface. If the surface area of your villi could be stretched out, it would cover an area the size of a tennis court. Infer what would happen to a person’s weight if the number of villi were drastically reduced. Why?
The Large Intestine When the chyme enters the large intestine, it is still a thin, watery mixture. The large intestine absorbs water from the undigested mass, which helps maintain homeostasis (hoh mee oh STAY sus). Peristalsis usually slows down in the large intestine. After the excess water is absorbed, the remaining undigested materials become more solid. Muscles in the rectum, which is the last section of the large intestine, and the anus control the release of semisolid wastes from the body in the form of feces (FEE seez).

Bacteria Are Important

Many types of bacteria live in your body. Some bacteria live in many of the organs of your digestive tract including your mouth and large intestine. Some of these bacteria live in a relationship that is beneficial to the bacteria and to your body. The bacteria in your large intestine feed on some undigested material and make vitamins you need—vitamin K and two B vitamins. Vitamin K is needed for blood clotting. The two B vitamins, niacin and thiamine, are important for your nervous system and for other body functions. Bacterial action also converts bile pigments into new compounds. The breakdown of intestinal materials by bacteria produces gas.
Why do you eat?

You might choose a food because of its taste, because it’s readily available, or quickly prepared. However, as much as you don’t want to admit it, the nutritional value of and Calories in foods are more important. A Calorie is a measurement of the amount of energy available in food. The amount of food energy a person requires varies with activity level, body weight, age, sex, and natural body efficiency. A chocolate donut might be tasty, quick to eat, and provide plenty of Calories, but it has only some of the nutrients that your body needs.

Classes of Nutrients

Six kinds of nutrients are available in food—proteins, carbohydrates, fats, vitamins, minerals, and water. Proteins, carbohydrates, vitamins, and fats all contain carbon and are called organic nutrients. Inorganic nutrients, such as water and minerals, do not contain carbon. Foods containing carbohydrates, fats, and proteins need to be digested or broken down before your body can use them. Water, vitamins, and minerals don’t require digestion and are absorbed directly into your bloodstream.

Proteins

Your body uses proteins for replacement and repair of body cells and for growth. Proteins are large molecules that contain carbon, hydrogen, oxygen, nitrogen, and sometimes sulfur. A molecule of protein is made up of a large number of smaller units, or building blocks, called amino acids. You can see some sources of proteins in Figure 5.

Figure 5 Meats, poultry, eggs, fish, peas, beans, and nuts are all rich in protein.
Protein Building Blocks Your body needs only 20 amino acids in various combinations to make the thousands of proteins used in your cells. Most of these amino acids can be made in your body’s cells, but eight of them cannot. These eight are called essential amino acids. They have to be supplied by the foods you eat. Complete proteins provide all of the essential amino acids. Eggs, milk, cheese, and meat contain complete proteins. Incomplete proteins are missing one or more of the essential amino acids. If you are a vegetarian, you can get all of the essential amino acids by eating a wide variety of protein-rich vegetables, fruits, and grains.

Carbohydrates Study the nutrition label on several boxes of cereal. You’ll notice that the number of grams of carbohydrates found in a typical serving of cereal is higher than the amounts of the other nutrients. **Carbohydrates** (kar boh HI drayts) usually are the main sources of energy for your body.

Three types of carbohydrates are sugar, starch, and fiber. Sugars are called simple carbohydrates. You’re probably most familiar with table sugar. However, fruits, honey, and milk also contain forms of sugar. Your cells break down glucose, a simple sugar.

The other two types of carbohydrates—starch and fiber—are called complex carbohydrates. Starch is found in potatoes and foods made from grains such as pasta. Starches are made up of many simple sugars. Fiber, such as cellulose, is found in the cell walls of plant cells. Foods like whole-grain breads and cereals, beans, peas, and other vegetables and fruits, like those in Figure 6, are good sources of fiber. Because different types of fiber are found in foods, you should eat a variety of fiber-rich plant foods. You cannot digest fiber, but it is needed to keep your digestive system running smoothly.

Fats The term *fat* has developed a negative meaning for some people. However, fats, also called lipids, are necessary because they provide energy and help your body absorb vitamins. Fat tissue cushions your internal organs. A major part of every cell membrane is made up of a type of fat.

Figure 6 These foods contain carbohydrates that provide energy for all the things that you do. **Describe** the role of carbohydrates in your body.
A gram of fat can release more than twice as much energy as a gram of carbohydrate can. Excess energy from the foods you eat is converted to fat and stored in certain cells for later use, as shown in Figure 7.

Why is fat a good storage unit for energy?

Fats are classified as unsaturated or saturated based on their chemical structure. Unsaturated fats are usually liquid at room temperature. Vegetable oils as well as fats found in seeds are unsaturated fats. Saturated fats are found in meats, animal products, and some plants and are usually solid at room temperature. Saturated fats have been associated with high levels of blood cholesterol. However, your body makes cholesterol in your liver. Cholesterol is part of the cell membrane in all of your cells. But, a diet high in cholesterol may result in deposits forming on the inside walls of blood vessels. These deposits can block the blood supply to organs and increase blood pressure. This can lead to heart disease and strokes.

Vitamins Your bone cells need vitamin D to use calcium, and your blood needs vitamin K in order to clot. **Vitamins** are organic nutrients needed in small quantities for growth, regulating body functions, and preventing some diseases.

Vitamins are classified into two groups. Some vitamins dissolve easily in water and are called water-soluble vitamins. They are not stored by your body so you have to consume them daily. Other vitamins dissolve only in fat and are called fat-soluble vitamins. These vitamins are stored by your body. Although you eat or drink most vitamins, some are made by your body. Vitamin D is made when your skin is exposed to sunlight. Recall that vitamin K and two of the B vitamins are made in your large intestine with the help of bacteria that live there.

Comparing the Fat Content of Foods

Procedure

1. Complete a safety worksheet.
2. Collect three pieces of each of the following foods: potato chips, pretzels, peanuts, and small cubes of fruits, cheese, vegetables, and meat.
3. Place the food items on a piece of brown grocery bag. Label the paper with the name of each food. Do not taste the foods.
4. Allow foods to sit for 30 min.
5. Remove the items, properly dispose of them, and observe the paper.

Analysis

1. Which items left a translucent (greasy) mark? Which left a wet mark?
2. How are the foods that left a greasy mark on the paper alike?
3. Use this test to determine which other foods contain fats.
Minerals

Inorganic nutrients—nutrients that lack carbon and regulate many chemical reactions in your body—are called minerals. Of about 14 minerals that your body uses, calcium and phosphorus are used in the largest amounts for a variety of body functions. One of these functions is the formation and maintenance of bone. Some minerals, called trace minerals, are required only in small amounts. Copper and iodine usually are listed as trace minerals. Minerals are not used by the body as a source of energy. However, they do serve many different functions. Several minerals, their health effects, and some food sources for them are listed in Table 1.

Water

Next to oxygen, water is the most important factor for survival. Different organisms need different amounts of water to survive. You could live for a few weeks without food but for only a few days without water because your cells need water to carry out their work. Most of the nutrients you have studied in this chapter can’t be used by your body unless they are carried in a solution. This means that they have to be dissolved in water. In cells, chemical reactions take place in solutions.
The human body is about 60 percent water by mass. About two-thirds of your body water is located in your body cells. Water also is found around cells and in body fluids such as blood. Table 2 shows how your body loses water every day. To replace water lost each day, you need to drink about 2 L of liquids. However, drinking liquids isn’t the only way to supply cells with water. Most foods have more water than you realize. An apple is about 80 percent water, and many meats are 90 percent water.

Why do you get thirsty? Your body is made up of systems that operate together. When your body needs to replace lost water, messages are sent to your brain that result in a feeling of thirst. Drinking water satisfies your thirst and usually restores the body’s homeostasis. When homeostasis is restored, the signal to the brain stops and you no longer feel thirsty.

Food Groups

Because no naturally occurring food has every nutrient, you need to eat a variety of foods. Nutritionists have developed a simple system, called the food pyramid, shown in Figure 8, to help people select foods that supply all the nutrients needed for energy and growth. The recommended daily amount for each food group will supply your body with the nutrients it needs for good health.

<table>
<thead>
<tr>
<th>Method of Loss</th>
<th>Amount (mL/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaled air</td>
<td>350</td>
</tr>
<tr>
<td>Feces</td>
<td>150</td>
</tr>
<tr>
<td>Skin (mostly as sweat)</td>
<td>500</td>
</tr>
<tr>
<td>Urine</td>
<td>1,500</td>
</tr>
</tbody>
</table>

Figure 8 The pyramid shape reminds you that you should consume more servings from the bread and cereal group than from other groups.

Analyze Where should the least number of servings come from?
Digestion, Respiration, and Excretion

Self Check

1. List one example of a food source for each of the six classes of nutrients.
2. Explain how your body uses each class of nutrients.
3. Discuss how food choices can positively and negatively affect your health.
4. Explain the importance of water in the body.
5. Think Critically What foods from each food group would provide a balanced breakfast? Explain.

Summary

Why do you eat?
- Nutrients in food provide energy and materials for cell development, growth, and repair.

Classes of Nutrients
- Six kinds of nutrients are found in food—proteins, carbohydrates, fats, vitamins, minerals, and water.
- Proteins are used for growth and repair, carbohydrates provide energy, and fats store energy and cushion organs.
- Vitamins and minerals regulate body functions.
- Next to oxygen, water is the most important factor for your survival.

Food Groups
- The food pyramid and nutritional labels can help you choose foods that supply all the nutrients you need for energy and growth.

Daily Servings

Depending on your Calorie needs, each day you should eat six to eleven servings from the bread and cereal group, three to five servings from the vegetable group, two to four servings from the fruit group, two to three servings from the milk group, and two to three servings from the meat and beans group. Only small amounts of fats, oils, and sweets should be consumed.

The size of a serving is different for different foods. For example, a slice of bread or one ounce of ready-to-eat cereal is a bread and cereal group serving. One cup of raw leafy vegetables or one-half cup of cooked or chopped raw vegetables is a serving from the vegetable group. One medium apple, banana, or orange, one-half cup of canned fruit, or three-quarter cup of fruit juice is a fruit serving. A serving from the milk group can be one cup of milk or yogurt. Two ounces of cooked lean meat, one-half cup of cooked dry beans, one egg, or two tablespoons of peanut butter counts as a meat and beans group serving.

Food Labels

The nutritional facts on all packaged foods make it easier to make healthful food choices. These labels, like the one in Figure 9, can help you plan meals that supply the daily recommended amounts of nutrients and meet special dietary requirements (for example, a low-fat diet).

Figure 9 The information on a food label can help you decide what to eat.

Nutritional Facts

<table>
<thead>
<tr>
<th>Serving Size 1 Meal</th>
<th>Amount Per Serving</th>
<th>Calories from Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Fat 7g</td>
<td>7% Daily Value*</td>
<td></td>
</tr>
<tr>
<td>Saturated Fat 3.5g</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>Polyunsaturated Fat 1g</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>Monounsaturated Fat 2.5g</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>Cholesterol 35mg</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>Sodium 460mg</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>Total Carbohydrate 52g</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>Dietary Fiber 6g</td>
<td>24%</td>
<td></td>
</tr>
<tr>
<td>Sugar 17g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein 15g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin A 15%</td>
<td>Vitamin C 70%</td>
<td></td>
</tr>
<tr>
<td>Calcium 4%</td>
<td>Iron 10%</td>
<td></td>
</tr>
</tbody>
</table>

*Percent Daily Values are based on a 2,000 calorie diet. Your daily values may be higher or lower depending on your calorie needs.

Daily Servings

Depending on your Calorie needs, each day you should eat six to eleven servings from the bread and cereal group, three to five servings from the vegetable group, two to four servings from the fruit group, two to three servings from the milk group, and two to three servings from the meat and beans group. Only small amounts of fats, oils, and sweets should be consumed.

The size of a serving is different for different foods. For example, a slice of bread or one ounce of ready-to-eat cereal is a bread and cereal group serving. One cup of raw leafy vegetables or one-half cup of cooked or chopped raw vegetables is a serving from the vegetable group. One medium apple, banana, or orange, one-half cup of canned fruit, or three-quarter cup of fruit juice is a fruit serving. A serving from the milk group can be one cup of milk or yogurt. Two ounces of cooked lean meat, one-half cup of cooked dry beans, one egg, or two tablespoons of peanut butter counts as a meat and beans group serving.

Food Labels

The nutritional facts on all packaged foods make it easier to make healthful food choices. These labels, like the one in Figure 9, can help you plan meals that supply the daily recommended amounts of nutrients and meet special dietary requirements (for example, a low-fat diet).

Figure 9 The information on a food label can help you decide what to eat.

Nutritional Facts

<table>
<thead>
<tr>
<th>Serving Size 1 Meal</th>
<th>Amount Per Serving</th>
<th>Calories from Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Fat 7g</td>
<td>7% Daily Value*</td>
<td></td>
</tr>
<tr>
<td>Saturated Fat 3.5g</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>Polyunsaturated Fat 1g</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>Monounsaturated Fat 2.5g</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>Cholesterol 35mg</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>Sodium 460mg</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>Total Carbohydrate 52g</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>Dietary Fiber 6g</td>
<td>24%</td>
<td></td>
</tr>
<tr>
<td>Sugar 17g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein 15g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin A 15%</td>
<td>Vitamin C 70%</td>
<td></td>
</tr>
<tr>
<td>Calcium 4%</td>
<td>Iron 10%</td>
<td></td>
</tr>
</tbody>
</table>

*Percent Daily Values are based on a 2,000 calorie diet. Your daily values may be higher or lower depending on your calorie needs.

Daily Servings

Depending on your Calorie needs, each day you should eat six to eleven servings from the bread and cereal group, three to five servings from the vegetable group, two to four servings from the fruit group, two to three servings from the milk group, and two to three servings from the meat and beans group. Only small amounts of fats, oils, and sweets should be consumed.

The size of a serving is different for different foods. For example, a slice of bread or one ounce of ready-to-eat cereal is a bread and cereal group serving. One cup of raw leafy vegetables or one-half cup of cooked or chopped raw vegetables is a serving from the vegetable group. One medium apple, banana, or orange, one-half cup of canned fruit, or three-quarter cup of fruit juice is a fruit serving. A serving from the milk group can be one cup of milk or yogurt. Two ounces of cooked lean meat, one-half cup of cooked dry beans, one egg, or two tablespoons of peanut butter counts as a meat and beans group serving.

Food Labels

The nutritional facts on all packaged foods make it easier to make healthful food choices. These labels, like the one in Figure 9, can help you plan meals that supply the daily recommended amounts of nutrients and meet special dietary requirements (for example, a low-fat diet).
Different foods contain different nutrients. It’s important to eat a variety of foods to get the nutrients needed to maintain your health. Remember that there’s truth in the saying “You are what you eat.”

Real-World Problem

What nutrients are in foods?

Goals

- Analyze common foods for presence of nutrients.
- Infer which tested food is a good source of energy.

Materials

- Water
- Skim milk
- Droppers (2)
- Stirring rods (3)
- Test tubes (5)
- Test-tube rack
- Brown paper
- Iodine in dropper bottle

Safety Precautions

Complete a safety worksheet before you begin.

WARNING: Iodine is toxic. It can irritate skin and stain skin and clothing.

Procedure

1. Copy the data table below into your Science Journal.

2. Using a pencil, mark five 3-cm × 3-cm areas on the brown paper and label them Water, Bread, Apple, Milk, and Cheese.

3. Rub the apple, cheese, and bread onto their areas. Place five drops of water and five drops of milk onto their areas. Allow the paper to dry as you complete this lab.

4. Place the apple, bread, cheese, 1 mL of water, and 1 mL of milk in five different test tubes. Place each test tube in the test-tube rack. Rinse the graduated cylinder.

5. Add 1 mL water to the apple, bread, and cheese test tubes. Use a different stirring rod to mix each test tube’s contents.

6. Add two drops of iodine to each test tube. Iodine turns blue-black in the presence of starch. Record your results in the data table.

7. Observe the brown paper after it dries. A shiny, translucent area indicates the presence of fat. Record your results in the data table.

Conclude and Apply

1. Which foods contain starch? Fat?

2. Infer the purpose in this lab of the water area on the brown paper and water test tube?

3. Which food contains the most energy? How do you know?

4. If you were on a low-carbohydrate diet, which tested food(s) could you eat?

Nutrient Data

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Water</th>
<th>Apple</th>
<th>Milk</th>
<th>Bread</th>
<th>Cheese</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes/No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes/No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Functions of the Respiratory System

Can you imagine an astronaut walking on the Moon without a space suit or a diver exploring the ocean without scuba gear? Of course not. They couldn’t survive in either location under those conditions because humans need to breathe air.

People often confuse the terms breathing and respiration. Breathing is the movement of the chest that brings air into the lungs and removes waste gases. The air entering the lungs contains oxygen. It passes from the lungs into the circulatory system because there is less oxygen in blood when it enters the lungs than in cells of the lungs.

Blood carries oxygen and glucose from digested food to individual cells. The oxygen delivered to the cells is used to release energy from glucose. This chemical reaction is called cellular respiration. Without oxygen, this reaction would not take place. Carbon dioxide and water molecules are waste products of cellular respiration. They are carried back to the lungs in the blood. Exhaling, or breathing out, eliminates waste carbon dioxide and some water molecules as shown in Figure 10.

What is cellular respiration?

Figure 10 Several processes are involved in how the body obtains, transports, and uses oxygen.

New Vocabulary
- larynx
- bronchi
- trachea
- alveoli

Review Vocabulary
- diaphragm: muscle beneath the lungs that contracts and relaxes to move gases in and out of the body

What You’ll Learn
- **Describe** the functions of the respiratory system.
- **Explain** how oxygen and carbon dioxide are exchanged in the lungs and in tissues.
- **Identify** the pathway of air in and out of the lungs.
- **Explain** the effects of smoking on the respiratory system.

Why It’s Important
Your body’s cells depend on your respiratory system to supply oxygen and remove carbon dioxide.

Benchmarks—SC.F.1.3.1 Annually Assessed (pp. 140–142): The student understands that living things are composed of major systems that function in reproduction, growth, maintenance, and regulation.

Also covers: SC.F.1.3.4 (p. 141), SC.F.1.3.5 (pp. 140, 143), SC.G.1.3.1 Annually Assessed (p. 145)
Organs of the Respiratory System

The respiratory system, as shown in Figure 11, is made up of structures and organs that help move oxygen into the body and waste gases out of the body. Air enters your body through two openings in your nose called nostrils or through the mouth. Fine hairs inside the nostrils trap particles from the air. Air then passes through the nasal cavity, where it gets moistened and warmed by the body’s heat. Glands that produce sticky mucus line the nasal cavity. The mucus traps particles that were not trapped by nasal hairs. This process helps filter and clean the air you breathe. Tiny, hairlike structures, called cilia (SIH lee uh), sweep mucus and trapped material to the back of the throat where it can be swallowed.

Pharynx Warmed, moist air then enters the pharynx (FER ingks), which is a tubelike passageway for food, liquids, and air. At the lower end of the pharynx is the epiglottis. When you swallow, your epiglottis folds down, which allows food or liquids to enter your esophagus instead of your airway. What do you think has happened if you begin to choke?

Figure 11 Air can enter the body through the nostrils and the mouth. Explain an advantage of having air enter through the nostrils.
Larynx and Trachea Next, the air moves into your larynx (LER ingks). The larynx is the airway to which two pairs of horizontal folds of tissue, called vocal cords, are attached, as shown in Figure 11 on the previous page. Forcing air between the cords causes them to vibrate and produce sounds. When you speak, muscles tighten or loosen your vocal cords, resulting in different sounds. Your brain coordinates the movement of the muscles in your throat, tongue, cheeks, and lips when you talk, sing, or just make noise. Your teeth also are involved in forming letter sounds and words.

From the larynx, air moves into the trachea (TRAY kee uh). Strong, C-shaped rings of cartilage prevent the trachea from collapsing. It is lined with mucous membranes and cilia, also shown in Figure 11 on the previous page. The mucous membranes trap dust, bacteria, and pollen. The cilia move the mucus upward, where it is either swallowed or expelled from the nose or mouth. Why must the trachea stay open all the time?

Bronchi and the Lungs Air is carried into your lungs by two short tubes called bronchi (BRAHN ki) (singular, bronchus) at the lower end of the trachea. Within the lungs, the bronchi branch into smaller and smaller tubes. The smallest tubes are called bronchioles (BRAHN kee ohlz). At the end of each bronchiole are clusters of tiny, thin-walled sacs called alveoli (al VEE uh li) (singular, alveolus). Air passes into the bronchi, then into the bronchioles, and finally into the alveoli. Lungs are masses of alveoli, like the one shown in Figure 12, arranged in grapelike clusters. The capillaries surround the alveoli like a net.

The exchange of oxygen and carbon dioxide takes place between the alveoli and capillaries. The walls of the alveoli and capillaries are only one cell thick, as shown in Figure 12. Oxygen moves through the cell membranes of alveoli and through cell membranes of the capillaries into the blood. In blood, oxygen is picked up by hemoglobin (HEE muh gloh bun), a molecule in red blood cells, and carried to all body cells. At the same time, carbon dioxide and other cellular wastes leave the body cells and move into capillaries. Then they are carried by the blood to the lungs. In the lungs, waste gases move through cell membranes from capillaries into alveoli. Then waste gases leave the body when you exhale.
Why do you breathe?

Signals from your brain tell the muscles in your chest and abdomen to contract and relax. You don’t have to think about breathing to breathe, just like your heart beats without you telling it to beat. Your brain can change your breathing rate depending on the amount of carbon dioxide present in your blood. If a lot of carbon dioxide is present, your breathing rate increases. It decreases if less carbon dioxide is in your blood. You do have some control over your breathing—you can hold your breath if you want to. Eventually, your brain will respond to the buildup of carbon dioxide in your blood and signal your chest and abdomen muscles to work automatically. You will breathe whether you want to or not.

Inhaling and Exhaling Breathing is partly the result of changes in volume and resulting air pressure. Under normal conditions, a gas moves from an area of higher pressure to an area of lower pressure. When you squeeze an empty, soft-plastic bottle, air is pushed out. This happens because air pressure outside the top of the bottle is less than the pressure you create inside the bottle when you changed its volume. As you release your grip on the bottle, the air pressure inside the bottle becomes less than it is outside the bottle because the bottle’s volume changed. Air rushes back in, and the bottle returns to its original shape.

Your lungs work in a way similar to the squeezed bottle. Your diaphragm (DI uh fram) contracts and relaxes, changing the volume of the chest, which helps move gases into and out of your lungs. Figure 13 illustrates breathing.

How does your diaphragm help you breathe?

When a person’s airway is blocked, a rescuer can use abdominal thrusts, as shown in Figure 14, to save the life of the choking victim.
When food or other objects become lodged in the trachea, airflow between the lungs and the mouth and nasal cavity is blocked. Death can occur in minutes. However, prompt action by someone can save the life of a choking victim. The rescuer uses abdominal thrusts to force the victim’s diaphragm up. This decreases the volume of the chest cavity and forces air up in the trachea. The result is a rush of air that dislodges and expels the food or other object. The victim can breathe again. This technique is shown at right and should only be performed in emergency situations.

A. The rescuer stands behind the choking victim and wraps her arms around the victim’s upper abdomen. She places a fist (thumb side in) against the victim’s stomach. The fist should be below the ribs and above the navel.

B. With a violent, sharp movement, the rescuer thrusts her fist up into the area below the ribs. This action should be repeated as many times as necessary.
Diseases and Disorders of the Respiratory System

If you were asked to make a list of some things that can harm your respiratory system, you probably would put smoking at the top. As you can see in Table 3, many serious diseases are related to smoking. The chemical substances in tobacco—nicotine and tars—are poisons and can destroy cells. The high temperatures, smoke, and carbon monoxide produced when tobacco burns also can injure a smoker’s cells. Even if you are a nonsmoker, inhaling smoke from tobacco products—called secondhand smoke—is unhealthy and has the potential to harm your respiratory system. Smoking, polluted air, coal dust, and asbestos (as BES tus) have been related to respiratory problems such as asthma (AZ muh), bronchitis (brahn KI tus), emphysema (em fuh SEE muh), and cancer.

Respiratory Infections Bacteria and other micro-organisms and viruses can cause infections that affect any of the organs of the respiratory system. The common cold usually affects the upper part of the respiratory system—from the nose to the pharynx. The cold virus also can cause irritation and swelling in the larynx, trachea, and bronchi. The cilia that line the trachea and bronchi can be damaged. However, cilia usually heal rapidly.

Chronic Bronchitis When bronchial tubes are irritated and swell and too much mucus is produced, a disease called bronchitis develops. Many cases of bronchitis clear up within a few weeks, but the disease sometimes lasts for a long time. When this happens, it is called chronic (KRAH nihk) bronchitis.

Emphysema A disease in which the alveoli in the lungs enlarge is called emphysema. When cells in the alveoli are reddened and swollen, an enzyme is released that causes the walls of the alveoli to break down. As a result, alveoli can’t push air out of the lungs, so less oxygen moves into the bloodstream from the alveoli. When blood becomes low in oxygen and high in carbon dioxide, shortness of breath occurs.

Table 3 Smokers’ Risk of Death from Disease

<table>
<thead>
<tr>
<th>Disease</th>
<th>Smokers’ Risk Compared to Nonsmokers’ Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung cancer</td>
<td>23 times higher for males; 11 times higher for females</td>
</tr>
<tr>
<td>Chronic bronchitis and emphysema</td>
<td>5 times higher</td>
</tr>
<tr>
<td>Heart disease</td>
<td>2 times higher</td>
</tr>
</tbody>
</table>

LA.B.2.3.1

Topic: Secondhand Smoke
Visit fl6.msscience.com for Web links to information about the health aspects of secondhand smoke.

Activity Write a paragraph in your Science Journal summarizing the possible effects of secondhand smoke on your health.
Lung Cancer The third leading cause of death in men and women in the United States is lung cancer. Inhalation of the tar in cigarette smoke is the greatest contributing factor to lung cancer. In the body, tar and other ingredients found in smoke act as carcinogens (kar SIH nuh junz). Carcinogens are substances that can cause an uncontrolled growth of cells. In the lungs, this is called lung cancer. Lung cancer is not easy to detect in its early stages. As indicated in Figure 15, smoking also has been linked to the development of cancers of the mouth, esophagus, larynx, pancreas, kidney, and bladder.

Asthma Shortness of breath, wheezing, or coughing can occur in a lung disorder called asthma. When a person has an asthma attack, the bronchial tubes contract quickly. Inhaling medicine that relaxes the bronchial tubes is the usual treatment for an asthma attack. Asthma can be an allergic reaction. An allergic reaction occurs when the body overreacts to a foreign substance. An asthma attack can result from breathing certain substances such as cigarette smoke or certain plant pollen, eating certain foods, or stress in a person’s life.

Figure 15 More than 85 percent of all lung cancer is related to smoking. Smoking also can play a part in the development of cancer in other body organs indicated above.
Functions of the Excretory System

It’s your turn to take out the trash. You carry the bag outside and put it in the trash can. The next day, you bring out another bag of trash, but the trash can is full. When trash isn’t collected, it piles up. Just as trash needs to be removed from your home to keep it livable, your body must eliminate wastes to remain healthy. Undigested material is eliminated by your large intestine. Waste gases are eliminated through the combined efforts of your circulatory and respiratory systems. Some salts are eliminated when you sweat. These systems function together as parts of your excretory system. If wastes aren’t eliminated, toxic substances can build up and damage organs. If not corrected, serious illness or death occurs.

The Urinary System

Figure 16 shows the role of the urinary system in the excretory system. The urinary system rids the blood of liquid wastes produced by the cells. It controls blood volume by removing excess water produced by body cells as a result of cellular respiration. The urinary system also balances the amounts of certain salts and water that must be present in cells for all cellular activities.

What You’ll Learn

- **Distinguish** between the excretory and urinary systems.
- **Describe** how the kidneys work.
- **Explain** what happens when urinary organs don’t work.

Why It’s Important

The urinary system helps clean your blood of cellular wastes.

Review Vocabulary

- **capillary**: blood vessel that connects arteries and veins

New Vocabulary

- nephron
- bladder
- ureter

Figure 16 The urinary, digestive, and respiratory systems, and the skin, make up the excretory system.
Regulating Fluid Levels To stay in good health, the fluid levels within the body must be balanced and normal blood pressure must be maintained. An area in the brain, the hypothalamus (hi poh THA luh mus), constantly monitors the amount of water in the blood. When the brain detects too much water in the blood, the hypothalamus releases a lesser amount of a specific hormone. This signals the kidneys to return less water to the blood and increase the amount of urine that is excreted.

How does the brain control the volume of water in the blood?

Organs of the Urinary System Excretory organs is another name for the organs of the urinary system. The main organs of the urinary system are two bean-shaped kidneys. Kidneys are located on the back wall of the abdomen at about waist level. The kidneys filter blood that contains wastes collected from cells. In approximately five minutes, all of the blood in your body passes through the kidneys. The red-brown color of the kidneys is due to their enormous blood supply. In Figure 17, you can see that blood enters the kidneys through a large artery and leaves through a large vein.

Figure 17 The urinary system removes wastes from the blood. The urinary system includes the kidneys, the bladder, and the connecting tubes. Explain how the kidneys help the body balance its fluid levels.
In the Kidney
A two-stage filtration system is an accurate description of a kidney, shown in Figure 18. It is made up of about one million tiny filtering units called nephrons (NE frahnz), also shown in Figure 18. Each nephron has a cuplike structure and a tubelike structure called a tubule. Blood moves from a renal artery to capillaries in the cuplike structure. The first filtration occurs when water and dissolved sugar, salt, and wastes move from the blood into the cuplike structure. Left behind in the blood are the red blood cells and proteins. Next, the liquid in the cuplike structure is squeezed into a tubule.

Capillaries that surround the tubule perform the second filtration. Most of the water and dissolved sugar and salt move from the nephron to the blood. These capillaries merge to form small veins, which merge to form a renal vein in each kidney. Purified blood is returned to the main circulatory system. The waste liquid left behind flows into collecting tubules in each kidney. This waste liquid, or urine, contains excess water and other wastes that are not reabsorbed by the body. An average-sized person produces about one liter of urine per day.

Urine Collection and Release The urine in each collecting tubule drains into a funnel-shaped area of each kidney that leads to the ureter (YOO ruh tur). Ureters are tubes that lead from each kidney to the bladder. The bladder is an elastic, muscular organ that can hold about one-half a liter of urine. When full, the bladder looks like an inflated balloon and the cells lining the bladder are stretched and thin. When empty, the bladder looks wrinkled and the cells lining the bladder are thick. A tube called the urethra (yoo REE thruh) carries urine from the bladder to the outside of the body.

Figure 18 The nephron is a complex structure. Describe the main function of a nephron.
Urinary Diseases and Disorders

What happens when someone’s kidneys don’t work properly or stop working? Waste products that are not removed build up and act as poisons in body cells. Without excretion, an imbalance of salts occurs. The body responds by trying to restore this balance. If the balance isn’t restored, the kidneys and other organs can be damaged. Kidney failure occurs when the kidneys don’t work as they should. This is always a serious problem because the kidneys’ job is so important to the rest of the body.

How does your body gain and lose water?

Your body depends on water. Without water, your cells could not carry out their activities and body systems could not function. Water is so important to your body that your brain and other body systems are involved in balancing water gain and water loss.

Identifying the Problem

Table A shows the major sources by which your body gains water. Oxidation of nutrients occurs when energy is released from nutrients by your body’s cells. Water is a waste product of these reactions. Table B lists the major sources by which your body loses water. The data show you how daily gain and loss of water are related.

Solving the Problem

1. What is the greatest source of water gained by your body? What is the greatest source of water lost by your body?
2. How would the percentages of water gained and lost change in a person who was working in extremely warm temperatures? In this case, what organ of the body would be the greatest contributor to water loss?
Blockage Because the ureters and urethra are narrow tubes, they can be blocked easily in some disorders. A blockage can cause serious problems because urine cannot flow out of the body properly. If the blockage is not corrected, the kidneys can be damaged.

Dialysis A person who has only one kidney still can live normally. The remaining kidney increases in size and works harder to make up for the loss of the other kidney. However, if both kidneys fail, the person will need to have his or her blood filtered by an artificial kidney machine in a process called dialysis (di AH luh sus), as shown in Figure 19.

Figure 19 A dialysis machine can replace or help with some of the activities of the kidneys in a person with kidney failure. Like the kidney, the dialysis machine removes wastes from the blood.
Goals

- **Compare and contrast** the dissolving rates of different sized particles.
- **Predict** the dissolving rate of sugar particles larger than sugar cubes.
- **Predict** the dissolving rate of sugar particles smaller than particles of ground sugar.
- **Infer**, using the lab results, why the body must break down and dissolve food particles.

Materials

- beakers or jars (3)
- thermometers (3)
- sugar granules
- mortar and pestle
- triple-beam balance
- stirring rod
- sugar cubes
- weighing paper
- warm water
- stopwatch

Safety Precautions

Complete a safety worksheet before you begin.

WARNING: *Never taste, eat, or drink any materials used in the lab.*

Real-World Problem

Before food reaches the small intestine, it is digested mechanically in the mouth and the stomach. The food mass is reduced to small particles. You can chew an apple into small pieces, but you would feed applesauce to a small child who didn’t have teeth. What is the advantage of reducing the size of the food material? Does reducing the size of food particles aid the process of digestion?

Procedure

1. Copy the data table below into your Science Journal.

<table>
<thead>
<tr>
<th>Dissolving Times of Sugar Particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of Sugar Particles</td>
</tr>
<tr>
<td>Sugar cube</td>
</tr>
<tr>
<td>Sugar granules</td>
</tr>
<tr>
<td>Ground sugar particles</td>
</tr>
</tbody>
</table>

2. Place a sugar cube into your mortar and grind up the cube with the pestle until the sugar becomes powder.

3. Using the triple-beam balance and weighing paper, measure the mass of the powdered sugar from your mortar. Using separate sheets of weighing paper, measure the mass of a sugar cube and the mass of a sample of the granular sugar. The masses of the powdered sugar, sugar cube, and granular sugar should be approximately equal to each other. Record the three masses in your data table.

4. Place warm water into the three beakers. Use the thermometers to be certain the water in each beaker is the same temperature.
5. Place the sugar cube in a beaker, the powdered sugar in a second beaker, and the granular sugar in a third beaker. Place all the sugar samples in the beakers at the same time and start the stopwatch when you put the sugar samples in the beaker.

6. Stir each sample equally.

7. Measure the time it takes each sugar sample to dissolve and record the times in your data table.

Analyze Your Data

1. **Identify** the experiment’s constants and variables.

2. **Compare** the rates at which the sugar samples dissolved. What type of sugar dissolved most rapidly? Which was the slowest to dissolve?

3. **Identify** possible sources of error in this lab.

Conclude and Apply

1. **Predict** how long it would take sugar particles larger than the sugar cubes to dissolve. Predict how long it would take sugar particles smaller than the powdered sugar to dissolve.

2. **Infer** and explain the reason why small particles dissolve more rapidly than large particles.

3. **Infer** why you should thoroughly chew your food.

4. **Explain** how reducing the size of food particles aids the process of digestion.

Communicating Your Data

Write a news column for a health magazine explaining to health-conscious people what they can do to digest their food better.
Growing up in India in the first half of the twentieth century, R. Rajalakshmi (RAH jah lok shmee) saw many people around her who did not get enough food. Breakfast for a poor child might have been a cup of tea. Lunch might have consisted of a slice of bread. For dinner, a child might have eaten a serving of rice with a small piece of fish. This type of diet, low in calories and nutrients, resulted in children who were often sick and died young.

In the 1960s, R. Rajalakshmi was asked to help manage a program to improve nutrition in her country. North American and European nutritionists suggested foods that were common and worked well for people who lived in these areas. But Rajalakshmi knew this advice was useless in a country such as India.

The Proper Diet for India

Rajalakshmi knew that for a nutrition program to work, it had to fit Indian culture. First, she found out what healthy middle-class people in India ate. She took note of the nutrients available in those foods. Then she looked for cheap, easy-to-find foods that would provide the same nutrients. Rajalakshmi created a balanced diet of locally grown fruits, vegetables, and grains.

Rajalakshmi’s ideas were thought unusual in the 1960s. For example, she insisted that a diet without meat could provide all major nutrients. It took persistence to get others to accept her ideas. Because of Rajalakshmi’s program, Indian children almost doubled their food intake. Many children who would have been hungry and ill, grew healthy and strong.

Thanks to R. Rajalakshmi and other nutritionists, many children in India are eating well and staying healthy.

Report Choose a continent and research what foods are native to that area. As a class, compile a list of the foods and where they originated. Using the class list, create a world map on a bulletin board that shows the origins of the different foods. LA.A.2.3.4
Section 1 The Digestive System

1. Mechanical digestion breaks down food through chewing and churning. Enzymes and other chemicals aid chemical digestion.

2. Food passes through the mouth, esophagus, stomach, small intestine, large intestine, and rectum and then out the anus.

3. The large intestine absorbs water, which helps the body maintain homeostasis.

Section 4 The Excretory System

1. Breathing is the movement of the chest that allows air to move into the lungs and waste gases to leave the lungs.

2. The chemical reaction in cells that uses oxygen, releases energy, and produces carbon dioxide and water as wastes is called cellular respiration.

3. Smoking causes many respiratory problems, including chronic bronchitis, emphysema, and lung cancer.

Section 2 Nutrition

1. Proteins, carbohydrates, fats, vitamins, minerals, and water are the six nutrients found in foods.

2. Health is affected by the combination of foods that make up a diet.

Section 3 The Respiratory System

1. The respiratory system brings oxygen into the body and removes carbon dioxide.

2. Breathing is the movement of the chest that allows air to move into the lungs and waste gases to leave the lungs.

3. The chemical reaction in cells that uses oxygen, releases energy, and produces carbon dioxide and water as wastes is called cellular respiration.

4. Smoking causes many respiratory problems, including chronic bronchitis, emphysema, and lung cancer.

Copy and complete the following table on the respiratory and excretory systems.

<table>
<thead>
<tr>
<th>Human Body Systems</th>
<th>Respiratory System</th>
<th>Excretory System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major organs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wastes eliminated</td>
<td>Do not write in this book.</td>
<td></td>
</tr>
<tr>
<td>Disorders</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interactive Tutor fl6.msscience.com

CHAPTER STUDY GUIDE 155

L.A.A.2.3.7
Using Vocabulary

alveoli p. 142
amino acid p. 133
bladder p. 149
bronchi p. 142
carbohydrate p. 134
chyme p. 131
enzyme p. 128
larynx p. 142

mineral p. 136
nephron p. 149
nutrient p. 128
peristalsis p. 130
trachea p. 142
ureter p. 149
villi p. 131
vitamin p. 135

Write the vocabulary term that matches each definition given below.

1. muscular contractions of the esophagus
2. the building blocks of proteins
3. liquid product of digestion
4. inorganic nutrient
5. the filtering unit of the kidney
6. thin-walled sacs in the lungs
7. elastic muscular organ that holds urine
8. a type of protein that speeds up the rate of a chemical reaction in your body
9. nutrient that is the main source of energy for your body
10. fingerlike projections covering the folds in the small intestine

Checking Concepts

Choose the word or phrase that best answers the question.

11. Where in humans does most chemical digestion occur?
 A) duodenum C) liver
 B) stomach D) large intestine

12. In which organ is water absorbed?
 A) liver C) small intestine
 B) esophagus D) large intestine

13. Which is an accessory organ?
 A) mouth C) small intestine
 B) stomach D) liver

14. What beneficial substances are produced by bacteria in the large intestine?
 A) fats C) vitamins
 B) minerals D) proteins

15. Which food group contains yogurt and cheese?
 A) dairy C) meat
 B) grain D) fruit

16. When you inhale, which organ contracts and moves down?
 A) bronchioles C) nephrons
 B) diaphragm D) kidneys

17. Exchange of gases occurs between capillaries and which of the following structures?
 A) alveoli C) bronchioles
 B) bronchi D) trachea

18. Which condition does smoking make worse?
 A) arthritis C) excretion
 B) respiration D) emphysema

19. Urine is held temporarily in which structure?

20. Which substance does not move into the blood after it passes through the kidneys?
 A) salt C) waste liquid
 B) sugar D) water
21. **Make and use a table** to sequence the order of organs in the digestive system through which food passes. Indicate whether ingestion, digestion, absorption, or elimination takes place in each.

22. **Compare and contrast** the three types of carbohydrates—sugar, starch, and fiber.

23. **Classify** the parts of your favorite sandwich into three of the nutrient categories—carbohydrates, proteins, and fats.

24. **Recognize cause and effect** by discussing how lack of oxygen is related to lack of energy.

25. **Form a hypothesis** about the number of breaths a person might take per minute in each of these situations: asleep, exercising, and on top of Mount Everest. Give a reason for each hypothesis.

26. **Concept Map** Make an events-chain concept map showing how urine forms in the kidneys. Begin with, “In the nephron …”

Use the table below to answer question 27.

<table>
<thead>
<tr>
<th>Materials Filtered by the Kidneys</th>
<th>Amount Moving Through Kidney</th>
<th>Amount Excreted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>125 L</td>
<td>1 L</td>
</tr>
<tr>
<td>Salt</td>
<td>350 g</td>
<td>10 g</td>
</tr>
<tr>
<td>Urea</td>
<td>1 g</td>
<td>1 g</td>
</tr>
<tr>
<td>Glucose</td>
<td>50 g</td>
<td>0 g</td>
</tr>
</tbody>
</table>

27. **Interpret Data** Study the data above. How much of each substance is reabsorbed into the blood in the kidneys? What substance is excreted completely in the urine?

28. **Describe** how bile aids the digestive process.

29. **Explain** how the bacteria that live in your large intestine help your body.

30. **Questionnaire and Interview** Prepare a questionnaire that can be used to interview a health specialist who works with lung cancer patients. Include questions on reasons for choosing the career, new methods of treatment, and the most encouraging or discouraging part of the job.

31. **Kidney Blood Flow** In approximately 5 min, all 5 L of blood in the body pass through the kidneys. Calculate the average rate of flow through the kidneys in liters per minute.

32. **Total Lung Capacity** What volume of air (mL) is left in the lungs after forcefully exhaling?
1. The diagram below shows the interaction between an alveolus and a capillary. The labels A and B indicate the gases that are exchanged between these structures.

Which gases do the labels A and B represent?
A. A is oxygen, and B is carbon dioxide.
B. A is carbon dioxide, and B is water.
C. A is water, and B is carbon dioxide.
D. A is carbon dioxide, and B is oxygen.

2. Many of the body’s systems work together to perform vital functions. Which systems work together to maintain the proper balance of fluids in the body?
F. respiratory and excretory
G. respiratory and digestive
H. digestive and endocrine
I. endocrine and excretory

3. Which is a benefit of the relationship between humans and intestinal bacteria?
A. Bacteria produce gases in the intestine.
B. Bacteria increase water absorption.
C. Bacteria can infect other body tissues.
D. Bacteria breakdown some of the indigestible material.

4. The table below lists the nutrition facts for vanilla ice cream.

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>DV (Daily Values)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serving size</td>
<td>112 g</td>
<td>n/a</td>
</tr>
<tr>
<td>Calories</td>
<td>208</td>
<td>n/a</td>
</tr>
<tr>
<td>Total fat</td>
<td>19 g</td>
<td>29%</td>
</tr>
<tr>
<td>Saturated fat</td>
<td>11 g</td>
<td>55%</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>0.125 g</td>
<td>42%</td>
</tr>
<tr>
<td>Sodium</td>
<td>0.90 g</td>
<td>4%</td>
</tr>
<tr>
<td>Total carbohydrates</td>
<td>22 g</td>
<td>7%</td>
</tr>
<tr>
<td>Fiber</td>
<td>0 g</td>
<td>0%</td>
</tr>
<tr>
<td>Sugars</td>
<td>22 g</td>
<td>n/a</td>
</tr>
<tr>
<td>Protein</td>
<td>5 g</td>
<td>n/a</td>
</tr>
<tr>
<td>Calcium</td>
<td>0.117 g</td>
<td>15%</td>
</tr>
<tr>
<td>Iron</td>
<td>n/a</td>
<td>0%</td>
</tr>
</tbody>
</table>

According to the information, which mineral has the greatest daily value (DV) percentage?
F. calcium
G. cholesterol
H. iron
I. sodium
5 The walls of the small intestine are covered with millions of villi, which increase the surface area of the walls. What is most likely the advantage of these structures?
A. They speed the release of digestive enzymes into the large intestine.
B. They help break down food by mechanical digestion.
C. They make the absorption of nutrients more efficient.
D. They sweep nutrients into the bloodstream.

6 For one week, research scientists collected and accurately measured the amount of body water lost and gained per day for four different patients. The table below lists the data the scientists collected.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Day 1 (L)</th>
<th>Day 2 (L)</th>
<th>Day 3 (L)</th>
<th>Day 4 (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Stoler</td>
<td>+0.15</td>
<td>+0.15</td>
<td>−0.35</td>
<td>+0.12</td>
</tr>
<tr>
<td>Mr. Jemma</td>
<td>−0.01</td>
<td>0.00</td>
<td>−0.20</td>
<td>−0.01</td>
</tr>
<tr>
<td>Mr. Lowe</td>
<td>0.00</td>
<td>+0.20</td>
<td>−0.28</td>
<td>+0.01</td>
</tr>
<tr>
<td>Mr. Cheng</td>
<td>−0.50</td>
<td>−0.50</td>
<td>−0.55</td>
<td>−0.32</td>
</tr>
</tbody>
</table>

In liters, what was the total body water gained by Mr. Stoler from Day 1 to Day 4?

7 Some people take in more calories than they can use. What is the possible outcome of this behavior? Does this outcome benefit or harm a person?

8 Leo is investigating the effect of varying amounts of the enzyme amylase on the breakdown of starch. The table below shows how he set up his investigation.

<table>
<thead>
<tr>
<th>Effect of Amylase of One Brand-X Cracker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume of Amylase (mL)</td>
</tr>
<tr>
<td>Fraction of Cracker Left</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

PART A According to the table, which variable has not been properly controlled?

PART B How might this affect the results of Leo’s study?